Attribute Interactions in Medical Data Analysis
نویسندگان
چکیده
There is much empirical evidence about the success of naive Bayesian classification (NBC) in medical applications of attribute-based machine learning. NBC assumes conditional independence between attributes. In classification, such classifiers sum up the pieces of classrelated evidence from individual attributes, independently of other attributes. The performance, however, deteriorates significantly when the “interactions” between attributes become critical. We propose an approach to handling attribute interactions within the framework of “voting” classifiers, such as NBC. We propose an operational test for detecting interactions in learning data, and a procedure that takes into account the detected interactions in learning. This approach induces a structuring of the domain of attributes, may lead to improved classifier’s performance and may provide useful novel information for the domain expert when interpreting the results of learning. We report on its application in data analysis and model construction for the prediction of clinical outcome in hip arthroplasty.
منابع مشابه
Sensitivity Analysis of Simple Additive Weighting Method (SAW): The Results of Change in the Weight of One Attribute on the Final Ranking of Alternatives
Most of data in a multi-attribute decision making (MADM) problem are unstable and changeable, then sensitivity analysis after problem solving can effectively contribute to making accurate decisions. This paper provides a new method for sensitivity analysis of MADM problems so that by using it and changing the weights of attributes, one can determine changes in the final results of a decision ma...
متن کاملSensitivity Analysis of TOPSIS Technique: The Results of Change in the Weight of One Attribute on the Final Ranking of Alternatives
Most of data in Multi-attribute decision making (MADM) problems are changeable rather than constant and stable. Therefore, sensitivity analysis after problem solving can effectively contribute to making accurate decisions. In this paper, we offer a new method for sensitivity analysis in multi-attribute decision making problems in which if the weights of one attribute changes, then we can dete...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملAttribute-based Access Control for Cloud-based Electronic Health Record (EHR) Systems
Electronic health record (EHR) system facilitates integrating patients' medical information and improves service productivity. However, user access to patient data in a privacy-preserving manner is still challenging problem. Many studies concerned with security and privacy in EHR systems. Rezaeibagha and Mu [1] have proposed a hybrid architecture for privacy-preserving accessing patient records...
متن کاملThe Process of Social Interactions in Patients With Hepatitis B Infection: A Grounded Theory Study
Background: The hepatitis B virus infection is a major cause of liver diseases in the world. It mostly affects psychological and social aspects as well as the mental health of patients. The aim of this study was to explain the process of social interactions in patients with Hepatitis B Virus (HBV) infection. Methods: The present study was conducted using the grounded theory method from 2...
متن کامل